Deterministic metrics
Tip
All the metrics listed below are accessible via evald
, the deterministic
entry point of evalhyd
.
For example, the Nash-Sutcliffe efficiency can be computed as follows:
#include <xtensor/xtensor.hpp>
#include <xtensor/xio.hpp>
#include <evalhyd/evald.hpp>
xt::xtensor<double, 2> obs = {{4.7, 4.3, 5.5, 2.7}};
xt::xtensor<double, 2> prd = {{5.3, 4.2, 5.7, 2.3}};
std::cout << evalhyd::evald(obs, prd, {"NSE"})[0] << std::endl;
// {{{ 0.862981}}}
>>> import numpy
... obs = numpy.array([[4.7, 4.3, 5.5, 2.7]])
... prd = numpy.array([[5.3, 4.2, 5.7, 2.3]])
>>> import evalhyd
... evalhyd.evald(obs, prd, ["NSE"])
[array([[[0.86298077]]])]
> obs <- rbind(c(4.7, 4.3, 5.5, 2.7))
> prd <- rbind(c(5.3, 4.2, 5.7, 2.3))
> library(evalhyd)
> evalhyd::evald(obs, prd, c("NSE"))
[[1]]
, , 1
[,1]
[1,] 0.8629808
$ ./evalhyd evald "obs.csv" "prd.csv" "NSE"
{{{ 0.862981}}}
MAE
Mean Absolute Error ("MAE"
).
Required inputs |
Output shape |
---|---|
|
|
MARE
Mean Absolute Relative Error ("MARE"
).
Required inputs |
Output shape |
---|---|
|
|
MSE
Mean Square Error ("MSE"
).
Required inputs |
Output shape |
---|---|
|
|
RMSE
Root Mean Square Error ("RMSE"
).
Required inputs |
Output shape |
---|---|
|
|
NSE
Nash-Sutcliffe Efficiency ("NSE"
) as per Nash and Sutcliffe (1970).
Required inputs |
Output shape |
---|---|
|
|
KGE
Kling-Gupta Efficiency1 ("KGE"
) as per Gupta et al., 2009.
Required inputs |
Output shape |
---|---|
|
|
KGE_D
Kling-Gupta Efficiency Decomposition1 ("KGE_D"
) into its
three components \(r_{pearson}\), \(\alpha\), \(\beta\),
in this order.
Required inputs |
Output shape |
---|---|
|
|
KGEPRIME
Modified Kling-Gupta Efficiency1 ("KGEPRIME"
) as per Kling et al., 2012.
Required inputs |
Output shape |
---|---|
|
|
KGEPRIME_D
Modified Kling-Gupta Efficiency Decomposition1 ("KGEPRIME_D"
) into its
three components \(r_{pearson}\), \(\gamma\), \(\beta\),
in this order.
Required inputs |
Output shape |
---|---|
|
|
KGENP
Non-Parametric Kling-Gupta Efficiency1 ("KGENP"
) as per Pool et al., 2018.
Required inputs |
Output shape |
---|---|
|
|
KGENP_D
Non-Parametric Kling-Gupta Efficiency Decomposition1 ("KGENP_D"
) into its
three components \(r_{spearman}\), \(\alpha_{NP}\), \(\beta\),
in this order.
Required inputs |
Output shape |
---|---|
|
|
CONT_TBL
Cells of the Contingency Table ("CONT_TBL"
), i.e. the hits \(a\),
the false alarms \(b\), the misses \(c\), and the correct
rejections \(d\), in this order.
Required inputs |
Output shape |
---|---|
|
|
Footnotes