GR is a family of lumped hydrological models designed for flow simulation at various time steps. The models are freely available in an R package called airGR (Coron et al., 2017a, 2017b). The models can easily be implemented on a set of catchments with limited data requirements.

How to use other R packages to perform parameters estimation

- Definition of the necessary function:
 - transformation of parameters to real space (available in airGR)
 - computation of the value of the performance criterion (e.g., RMSE)

 \[
 \text{OptimGR4J} <- \text{function(Param_Optim)} \\
 \text{Param_Optim_Vre} <- \text{airGR::TransfoParam_GR4J(ParamIn = Param_Optim, Direction = "TR")}
 \]

- Local optimisation
 - Single-start (here) or multi-start approach to test the consistency of the local optimisation

 \[
 \text{optPORT} \leftarrow \text{stats::nlminb(start = startGR4J, objective = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1))}
 \]

- Global optimisation
 - Most often used when facing a complex response surface, with multiple local minima
 - Differential Evolution

 \[
 \text{optDE} \leftarrow \text{DEoptim::DEoptim(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = list(trace = 1))}
 \]

 \[
 \text{Particle Swarm}
 \]

 \[
 \text{optPS} \leftarrow \text{hydropSD::hydropSD(fn = OptimGR4J, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim(control = list(trace = 1)))}
 \]

 \[
 \text{MA-LS-Chains}
 \]

 \[
 \text{optMLChains} \leftarrow \text{MA-LS-Chains::MA-LS-Chains(fn = OptimGR4J, max_Num_Chains = 2000, lower = lowerGR4J, upper = upperGR4J, control = DEoptim::DEoptim(control = list(trace = 1)))}
 \]

- Results

 \[
 \text{Table of results for different optimisation methods.}
 \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Lower</th>
<th>Upper</th>
<th>Control</th>
<th>Crit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORT</td>
<td>256.808</td>
<td>1.004</td>
<td>3.205</td>
<td>0.7852</td>
</tr>
<tr>
<td>DE</td>
<td>256.808</td>
<td>1.004</td>
<td>3.205</td>
<td>0.7852</td>
</tr>
<tr>
<td>PS</td>
<td>256.808</td>
<td>1.004</td>
<td>3.205</td>
<td>0.7852</td>
</tr>
<tr>
<td>MLChains</td>
<td>256.808</td>
<td>1.004</td>
<td>3.205</td>
<td>0.7852</td>
</tr>
</tbody>
</table>

- How to implement the package

 \[
 \text{OptimGR4J} \leftarrow \text{function(Param_Optim)} \\
 \text{Param_Optim_Vre} <- \text{airGR::TransfoParam_GR4J(ParamIn = Param_Optim, Direction = "TR")}
 \]

 \[
 \text{Hydrologists:}
 \]

 - easy interface to GR models
 - pre-processing and post-processing tools

 \[
 \text{News since EGU 2017 – airGR 1.09.64 vs airGR 1.05.12}
 \]

 - The \text{Param_Sets} _GR4J dataset was added. It contains generalist parameter sets for the GR4J model
 - If the calibration period is too short (< 6 months) and by consequence non-representative of the catchment behaviour, a local calibration algorithm can give poor results and we recommend to use the generalist parameter sets instead
 - Vignettes were added. They explain how to perform parameters estimation with:
 - Differential Evolution calibration algorithm
 - Particle Swarm calibration algorithm
 - MA-LS-Chains calibration algorithm
 - Bayesian MCMC framework
 - A new \text{airGRteaching} package (Delage et al., 2018) provides tools to simplify the use of the airGR hydrological package for education, including a ‘Shiny’ interface

- Future developments

 - New version of CemaNeige that allows to use satellite snow cover area for calibration (Riboulot et al., accepted)
 - Parameters maps on France for GR4J, GR4J & GR6J models for ungauged basins (Poncelet et al., submitted)

References

Download the airGR package

The airGR package is available on the Comprehensive R Archive Network (CRAN): https://CRAN.R-project.org/package=airGR/